

The Tester September 2015

Issue Number 54

Software Quality Beyond
Testing In-house Code

Klaus Haller & Rudolf Grötz

Abstract

Crucial software fails and management
needs someone to blame? Blame the
testers! They should find bugs before they
get into production! Yes, even testers make
mistakes. They might even sign-off software
they are not convinced of. More often,
however, issues are not caused by bugs in
the tested code, but by other factors. This
article discusses three of these factors. First,
there are configuration parameters. They
impact test coverage and test processes.
Second, relying on suppliers implies specific
quality risks. Third, the business aims
themselves can cause issues. The aim of
this paper is to discuss these three points
and to provide a solution by enhancing
standard software change processes.

Configuration Parameters: When
software suddenly turns mad!

Configuration parameters allow the adaption
of software behaviour quickly, if business
needs change. Also, they ensure repeatable
installations. Repeatable means that when
the installation is complete, it is in a carefully
defined state; it can be reconstructed for
future test cycles. Thus, all installation
parameters such as paths, Java Virtual
Machine settings, timeout periods etc. must
be put into an installation parameters file.
Based on this file, a batch job performs the
actual installation. This is one core idea of
DevOps [1]. When test and production
systems are set up as similar as possible,

this reduces “production only bugs.” Such
bugs appear in production only and do not
appear in testing due to a different set-up.
They are the fear of IT departments.

However, besides technical parameters,
there are Application parameters. They
impact the business logic. In a core-banking
system, they define e.g. the limit for loans
for which two credit officers have to approve
the loan. Other parameters provide the files
of the bank logo used for account
statements. Parameters provide more
flexibility since changing them is easier than
changing code.

On the other side, such parameters have
drawbacks. Test coverage can drop and
they allow for bypassing the software
change processes. Various software
deployment tools install software in
production only, if it is packaged and signed-
off by testing. Neither developers (and
certainly not users) can change the software
behaviour without a sign-off from testing.
However, this changes for GUI parameters.
Power users might be able to change GUI
parameters and, thereby, bypass the
software change process (Figure 1).

An organizational solution is needed: First,
restrict who has access to GUI parameters.
Second, communicate that no change is
allowed without testing. Third, make clear
that sanctions for not following the rules are
widely understood.

The Tester September 2015

Issue Number 54

Figure 1: How configuration parameters undermine test and change processes

The second drawback is a drop in test
coverage. The number of configuration
options might explode due to the
parameters. No test budget will grow at the
same pace. We assume a system with five
parameters: JVM memory settings, timeouts,
maximum number of users, disk size and
application server version. Each parameter
can have one value out of four. The result is
4*4*4*4*4 = 1024 configuration options. No
IT department will pay for testing all options
if the software is installed in three branches
in Zürich, London, and Singapore only.

Thus, there is a risk that when changing
parameters in production, the new
configuration might not have been tested.
The application usage can move out of the
test scope (see Figure 2). It is not clear
whether the software might crash or produce
wrong results. To prevent this, changing
parameters must trigger testing, even if
there is no new package (Figure 3,
Checkpoint A).

Figure 2: Test Coverage and Application Usage over time.

The Tester September 2015

Issue Number 54

Figure 3: Unified software change process considering technical and business-focused quality
assurance

Software Supply Channels – Stable
as a House of Cards?

This section looks on the quality impact of
3rd party software components. Our
example is a contract management solution
of an insurance company. It enables
insurance agents to print out contracts,
which clients sign. It can scan contracts and
store them in an archiving system. The
solution incorporates three 3rd party
software components: a reporting engine for
rendering a PDF with the contract for
printing it; a scanning solution with OCR;
and a document archive (Figure 4).

All vendors have one dilemma in common.
On the one hand, they need economies of
scale. The software must meet the needs of
many (potential) customers. On the other
hand, software vendors make an implicit
promise: the software works; it is (nearly)
bug-free; you can start using it tomorrow.
Obviously, the more configuration options
software has, the less likely is that all
options are tested in-depth and work as
expected.

The dilemma of software vendors has
implications for IT departments. First, the
latter have to accept this reality. Vendors
test a new release before rolling out
software to their customers. Their test
scope, however, is not guaranteed to match
the exact usage scope of all customers.
Second, IT departments must manage this
quality risk. They could hope that there are
no bugs or that those that are present are
found in system integration testing. This is
obviously late and risky. A better approach
is to model test cases based on their own
usage of the 3rd party software. The IT
department tests based on them when the
vendor rolls out a new release. This is a new
quality gate (Figure 3, checkpoint B). Only if
the new release works with the rest of the
solution, is it incorporated in the customer’s
IT landscape.

In the case of niche products, the most
sustainable solution is to try to hand over the
test cases to the vendor. Then, the vendor
can add them to their regression test set.

Issue Number 54

The Tester September 2015

Figure 4: Quality risks in software supply chains

Business Focused Quality – or –
Testing is neither Optimization nor
Validation of Business Aims

The reason to start an IT project can be
anything from a purely technical to a highly
business-related aim. An example for a
technical project is upgrading all Linux
servers to a common patch level. The
project succeeds if the technical goal is
reached. Projects with a strong business
focus differ. We use an investment fund as
an example. The fund uses an automated
trading system, which decides on a day-to-
day basis when to buy and sell which
stocks. Now a trader has an idea: If we
introduce a new trading rule “sell stocks
which gained 10% or more in a week”, the
fund profit should rise by 1% per year.

Three dimensions describe the success of
the project:

(1) Technical correctness: Is the business
rule implemented as specified? Are stocks
sold if they gain 10% or more in a week, but
not if they raise only 5% or drop by 15%?

(2) Achievement of business aim: Does the
new rule increase profits by 1%?

(3) Optimization question: Is “10% gain
within a week” the best configuration? Could
the profit be increased by changing the rule
to “sell stock if it gained 8% within three
days”?

Testers sign-off the technical correctness of
the software after testing (1). They do not
and cannot check whether and how efficient
software helps achieving business aims (2
and 3). For the latter, often the software has
to be in production for days or weeks to see
the effects. This requires rethinking root-
causes for rolling back to an old release or
deploying emergency fixes to production.

IT problems (buggy software, which get into
production, aka a testing disaster) are only
one root-cause for emergency fixes. Wrong
assumptions by the business are a second
option (e.g. the trading rule was not a good
idea). The software change process has to
reflect them as well. Besides a sign off from
testers, a sign-off against business aims and

The Tester September 2015

Issue Number 54

optimization goals is needed. This requires
adding a new checkpoint to the software
change process after the deployment to
production (Figure 4, checkpoint C).

Conclusion

Software quality is more than testing
internally developed code. Configuration

parameters, 3rd party software components
and business (optimization) aims pose new
challenges for software testing and change.
To overcome this, this article elaborated
how to enhance software testing and
change management processes to uniformly
assure technical and business-focused
software quality.

[1] M. Loukides: What is DevOps? http://radar.oreilly.com/2012/06/what-is-devops.html, last retrieved July 26th, 2015

Klaus Haller is an IT consultant with Swisscom Enterprise Customers in
Zurich. Since 2005, he has worked mainly in the Swiss banking sector. His
areas of expertise are testing and test centre organization, test data
management, compliance testing and IT risk. He publishes frequently in
magazines and speaks on conferences. More about him on his webpage
http://www.klaushaller.net

Rudolf Grötz is an ISTQB Certified Full Advance Tester. He heads the QA
Division of Jumio Inc. in Vienna. Since he got in contact with agile ideas in
2008, he is convinced that “agile” is like a poison. It works in the right doses,
but too much is deadly. Thus, he continuously aims to find the right does to
make requirements engineering and test automation a success. He publishes
frequently in magazines and speaks on conferences. More about him on
XING: https://www.xing.com/profile/Rudolf_Groetz

The opinions expressed in this article are the authors’ own and do not necessarily represent the views of the companies they are working for.

--

Write an article

We are always on the lookout for new content, so if you have a testing story you would like to share, a
test technique you would like to evangelise or testing research you would like to publish, then The
Tester is the place to do it. Simply email the Editor on phill.isles@bcs.org

--

